-
Der Flug zum Mond und die Mondlandung der chinesischen Raumsonde Chang`e-3
Autor: Siegie 12.12.13 - 17:10
1. Der Flug zum Mond der chinesischen Raumsonde Chnag`e-3
Nach erreichen der 2. Kosmischen Geschwindigkeit von 11,2 km/s wirkt bis zum Mond nur die Gravitation der Erde und die des Mondes auf die Raumsonde. Um die Wirkung der Erd- und Mondgravitation auf die Raumsonde zu berechnen, muss man sich des Gravitationsgesetzes bedienen. Aus dem Newtonschen Gravitationsgesetz lässt sich folgende allgemeine Relation ableiten, die den Zusammenhang zwischen den beiden Gravitationsbeschleunigungen g1 (vom Zentralkörper-Erde/Mond) und g2 (vom Raumschiff) und den beiden Radien r1 (Radius eines Zentralkörpers, z.B. der der Erde/des Mondes) und r2 (Entfernung des Raumschiffes zu einem Gravitationskörper, z.B. zu der Raumsonde Chang`e-3) widerspiegeln:
g2=g1*r1² (1)
r2²
Auf die Raumsonde in einer Entfernung von r von der Erde mit dem Radius R bezogen, wirkt eine Gravitation von:
gr= gE*R² (2)
r²
Nun muss die Formel (2) integriert und durch r dividiert werden, um die durchschnittliche Gravitationsbeschleunigung gr berechnen zu können. Die durchschnittliche Gravitationsgröße gr errechnet sich zu
r r
gr= gE *R² ∫ 1 dr = gE *R² | -1 |. (3)
r R r² r r R
Nun muss die Entfernung von der Erde bis zum Punkt r bestimmt werden, wo die 11,2 km/s an Fluchtgeschwindigkeit quasi auf Null durch die Wirkung der durchschnittlichen Gravitationsbeschleunigung gr abgebremst wird. Dazu muss die transformierte und umgestellte Formel (3) mit
gr= v² (4)
2*r
gleichgesetzt werden. Es gilt dann, wie gezeigt werden kann
r= -gE*2R². (5)
v²- gE*2R
Damit ergibt sich für
r= -2*9,89 * 6340000² m = 180.657 km . (6)
11.200² - 2*9,89*6340.000
Die Entfernung zum Mond beträgt damit immerhin noch ca. 220.000 km (400.000 km-180.000 km). Die durchschnittliche positive Beschleunigung bis zum Mond nimmt dann einen Wert nach (5) von:
g(220.000 km)=1,62 m/s²*[( -1740² km²) )-( -1740² km² )]≈0,0078 m/s² (7)
220.000 *220.000 km² 1740*220.000 km²
an. Damit wird die Raumsonde Chang`e-3 bis auf eine Geschwindigkeit zum Mond von
v=√2*220.000.000 m*0,0078 m/s²= 2620 m/s² (8)
beschleunigt.
2.Die Einmündung der Raumsonde Chang`e-3 in die Mondumlaufbahn und die Mondlandung
Um in die Mondumlaufbahn zu münden, müssen die 2,62 km/s auf rund 1600 m/s abgebremst werden. Damit wäre eine Treibstoffmenge bei einer Landemasse von 3,7 t von
MTr=(2,721::2,6-1)*3,7t =(2,720,38-1)*3,7 t =(1,46 -1)*3,7 t = 0,46*3,7 t ≈ 1,7 t (9)
notwendig. Es verbleiben dann noch insgesamt 2 t. Zur Landung auf dem Erdtrabanten vom Mondortbit aus wären unter der Berücksichtigung der Mondgravitation, womit eine zusätzliche Geschwindigkeit bis zur Mondoberfläche von rund 402 m/s erzeugt wird (v=√100.000*2*1,62=402m/s) weitere 2,32 t Treibstoff erforderlich, wie nachfolgend eindrucksvoll gezeigt werden kann:
MTr= (2,722: 2,6 -1)*2 t = (2,720,77 -1)*2 t= (2,16 -1)*2 t=1,16*2 t ≈ 2,32 t. (10)
Schlussfolgerung: Die Landung von Chang`e-3 auf dem Erdtrabanten könnte ganz knapp gelingen, wenn man einmal bei den obigen mathematisch-physikalischen Grobkalkulationen und Schätzungen von gewissen Ungenauigkeiten und der Tatsache ausgeht, dass die Sonde noch einen Ionenantrieb besitzt. Nicht so bei Apollo 11: Um in die Mondumlaufbahn zu münden, mussten die 2,62 km/s des 41 t schweren Commando-Service-Moduls ebenfalls auf rund 1600 m/s abgebremst werden. Damit wäre eine zusätzliche Treibstoffmenge von
MTr=(2,72 1::2,6 -1)*41 t =(2,720,38-1)*41 t =(1,46 -1)*41 t = 0,46*41 t = 18,89 t (11)
notwendig gewesen. Zur Landung auf dem Erdtrabanten vom Mondortbit aus wären unter der Berücksichtigung der Mondgravitation, womit eine zusätzliche Geschwindigkeit bis zur Mondoberfläche von rund 402 m/s erzeugt wird (v=√100.000*2*1,62=402m/s) weitere 8,4 t Treibstoff erforderlich gewesen, wie gezeigt werden kann:
MTr= (2,722: 2,6 -1)*7,2 t = (2,720,77 -1)*7,2 t= (2,16 -1)*7,2 t=1,16*7,2 t = 8,4 t. (12)
Damit hätte die Mondlandefähre „Eagle“ bereits ihr Pulver mehr als verschossen gehabt, um es salopp zu formulieren, denn es standen ja insgesamt nur 7,8 t Treibstoff zur Verfügung. Es fehlten also insgesamt über 27 t Treibstoff, damit Apollo 11 überhaupt in die Mondumlaufbahn hätte einmünden können und um auf dem Mond zu landen. Schlussfolgerung: Apollo 11 war der größte Bluff der Menschheitsgeschichte!
Siegfried Marquardt, Königs Wusterhausen